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Darszon, Alberto, Pedro Labarca, Takuya Nishigaki, and Felipe Espinosa. Ion Channels in Sperm Physiology.
Physiol. Rev. 79: 481–510, 1999.—Fertilization is a matter of life or death. In animals of sexual reproduction, the
appropriate communication between mature and competent male and female gametes determines the generation of
a new individual. Ion channels are key elements in the dialogue between sperm, its environment, and the egg.
Components from the outer layer of the egg induce ion permeability changes in sperm that regulate sperm motility,
chemotaxis, and the acrosome reaction. Sperm are tiny differentiated terminal cells unable to synthesize protein and
difficult to study electrophysiologically. Thus understanding how sperm ion channels participate in fertilization
requires combining planar bilayer techniques, in vivo measurements of membrane potential, intracellular Ca21 and
intracellular pH using fluorescent probes, patch-clamp recordings, and molecular cloning and heterologous expres-
sion. Spermatogenic cells are larger than sperm and synthesize the ion channels that will end up in mature sperm.
Correlating the presence and cellular distribution of various ion channels with their functional status at different
stages of spermatogenesis is contributing to understand their participation in differentiation and in sperm physiol-
ogy. The multi-faceted approach being used to unravel sperm ion channel function and regulation is yielding valuable
information about the finely orchestrated events that lead to sperm activation, induction of the acrosome reaction,
and in the end to the miracle of life.

I. INTRODUCTION

Fertilization is essential for sexual reproduction and for
the generation of a new individual. This fundamental pro-

cess requires communication between mature and com-
petent male and female gametes so that they may fuse.
Components from the external layers of the egg pro-
foundly influence sperm physiology, priming it for fertili-
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zation. Close to a century has gone by since the sperm-egg
dialogue began to be studied (184), yet the detailed mo-
lecular mechanisms involved remain elusive.

Traveling toward the egg, spermatozoa undergo sig-
nificant changes in their ionic milieu that modulate their
functional state. In organisms of external fertilization (ex-
ternal fertilizers), i.e., sea urchins and teleost fishes,
sperm develop the potential for motility only after leaving
the testis. For instance, a sea urchin can deliver as many
as 1010 sperm into the sea that, upon release, become
active swimmers, powered by a microscopic flagellar en-
gine. An amazing, still to be understood molecular orches-
tra tightly couples sperm behavior to chemical signals
from the environment and the egg, guiding it through the
waters in its most eventful journey. In spite of the won-
derful physiological hardware they are endowed with, for
most sperm the extenuating adventure will end nowhere.
From the millions of sperm released by a male, only a few
will find the egg to initiate the crucial event of fertilization
(106, 288). A sea urchin sperm released as close as 1 cm
away from an egg must swim around 50-fold its length to
reach its target. How, then, do sperm manage to find the
egg and fuse to it? There is still debate as to the role of
sperm chemotaxis in nature. It is probably only effective
at distances shorter than 0.2–0.5 mm (207).

In internal fertilizers such as reptiles, birds, and
mammals, sperm develop the potential for motility as they
pass through the epididymis (212). The behavior of sperm
after being released from the gonads is a most dramatic
example of continuous coupling between the cell machin-
ery and the outer environment. The sperm is not a deter-
ministic device oblivious to the external medium, tuned
only to the chemical signals from the egg outer layer. It
must avoid fusing with any other cells but the egg. The
concentration of ions, pollutants, pH, temperature, and
other physicochemical variables influence sperm behav-
ior and metabolism. Importantly, signals from the egg
modulate sperm physiology, inducing sperm to undergo a
series of ordered changes in configuration that enable it to
complete fertilization.

When sperm are spawned into the reproductive
ground or ejaculated into the female reproductive tract,
motility ensues. Activation is triggered by ionic or os-
motic changes. These transduction events are likely to
involve sperm ion channels (reviewed in Ref. 209). The
fact that the sperm can accomplish a variety of configu-
rational changes in a short time makes this tiny cell a
most attractive model in cell physiology (68, 309).

In the early 1950s, J. C. Dan (60, 61), studying the
entrance of sea urchin sperm into eggs by phase-contrast
and electron microscopy, discovered the acrosome reac-
tion (AR). It is now established that this exocytotic pro-
cess is one of the fundamental steps for fertilization in
many species, including mammals (68, 249, 288, 309). The
AR synchronizes the exposure of membrane elements

required for penetration of the egg coat and subsequent
fusion with the egg plasma membrane. Her discovery
brought to the attention of scientists that the spermato-
zoan, a tiny overlooked cell, needed to be studied to
understand fertilization (142). Soon after, Dan (62) dis-
covered that this reaction depended on the presence of
Ca21 in seawater. The dramatic influence of the external
ion composition on motility and the AR strongly suggests
that ion channels actively participate in these fundamen-
tal cell processes. Ion channels are essential elements in
cell signaling (140, 148). Certain ion channel blockers and
altered ionic conditions can inhibit sperm motility, sperm
maturation, and the AR.

Sperm ion channels are the subject of this review.
Although, at present, there is increasing and convincing
evidence that ion channels are fundamental to sperm
physiology, a full understanding of how these integral
membrane proteins influence sperm physiology is needed.
The ion channel mechanisms operating in sperm must be
elucidated, not a trivial thing to do due to their small size.
Another, not less involved, challenge is to unveil the
mechanisms by which ion channels in the cell surface are
regulated by the external environment and the intracellu-
lar metabolic machinery. Such a dialogue makes it possi-
ble for free-swimming sperm to operate as effective units
in the course of a quite momentous event for eukaryotes.

In the past 10 years, ion channel mechanisms have
been investigated in sperm using voltage- and ion-sensi-
tive dyes, bilayer reconstitution, DNA recombinant tech-
niques, cRNA expression in heterologous systems, immu-
nocytochemistry, pharmacology, and, to a lesser extent,
the patch clamp. Such studies have provided precious
information about sperm ion channels as well as on some
of the mechanisms that modulate them (reviewed in Ref.
68). Because of their incredible efficiency in catalyzing
the flow of millions of ions per second through the non-
conducting lipid bilayer, a few ion channels can cause
changes in the configuration of a small cell, like the
sperm, in milliseconds, a feat that cannot be achieved by
any other known membrane transporter or metabolic de-
vice (140). Ion concentrations not only determine cell
membrane potential through ion-selective channels in a
classic Nernstian fashion, but permeant ions can control
the extent of channel activity and therefore membrane
potential and ion flow. In turn, membrane potential gov-
erns the rates and direction of ion transport in channels
and exchangers; its fluctuations allow, for example, for
local pH and Ca21 concentration changes. Intracellular
Ca21 is key to flagellar motility and to the fusion of the
acrosomal vesicle. Moreover, in sperm, membrane poten-
tial is known to modulate the activity of membrane-bound
enzymes, causing changes in second messenger levels,
which modulate sperm ion channels (22).

Sperm are tiny differentiated terminal cells unable to
synthesize protein and difficult to study electrophysiologi-
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cally. Because of this, studying their ion channels has
required combining experimental approaches. Because
spermatogenic cells are larger than sperm and synthesize
the ion channels that will end up in mature sperm, they
are also being used to explore sperm ion channel func-
tion. Correlating the presence and cellular distribution of
various ion channels with their functional status at differ-
ent stages of spermatogenesis will allow a better under-
standing of their participation in differentiation and in
sperm physiology. This review starts with the general
characteristics of sperm, then the strategies used to learn
about sperm ion channels are described. The properties
and ways in which ion channels participate in sensing
environmental changes and transducing signals from the
egg are then discussed in detail. The authors apologize for
leaving out some important contributions due to space
limitations. There are several helpful reviews on general
aspects of gamete interaction and function (68, 90, 106,
156, 245, 249, 309, 310).

A. General Characteristics of Spermatozoa

Most animal sperm display a similar general design
(Fig. 1). They are quite small and are mainly composed of
1) a head (2–5 mm in diameter), containing condensed
packages of chromosomes in the nucleus, two centrioles,
and in many species, the acrosome, a membranous struc-
ture lying over the nucleus in the anterior part of the
sperm head. The nucleus occupies most of the head. 2)

The tail, of variable length depending on the species
(10–100 mm), has the characteristic “912” complex of
microtubules found in eukaryotic flagella and cilia. The
mammalian flagellum has accessory fibers not seen in
lower organisms. 3) A few mitochondria power the tail
movement at its base. They can be inside the sperm head
as in sea urchins or spirally arranged in the midpiece of
the tail as in mammals. The cytoplasmic volume of sperm
is very small; the internal volume per sea urchin and
human sperm has been estimated to be ;35 and 15 fl,
respectively (155, 252). Spermatozoa are unable to syn-
thesize proteins or nucleic acids. They are specialized
cells committed to find, fuse, and deliver their genetic
information to the egg.

II. STRATEGIES TO STUDY

SPERM ION CHANNELS

A. Fluorescent Indicators

Fluorescent probes have been used to measure, in
vivo, sperm intracellular Ca21 ([Ca21]i), intracellular
pH (pHi) (12, 94, 127, 128, 250, 327) and membrane
potential (EM) (10, 13, 114, 123, 251). Figure 2 illus-
trates how, in Strongylocentrotus purpuratus sea ur-
chin sperm, the egg factor that triggers the AR (F),
induces a 10- to 20-fold increase in [Ca21]i, a 0.2– 0.3
change in pHi, and a EM depolarization. All these ion

FIG. 1. Schematic diagram of a sea
urchin (left) and mouse sperm (right)
before (A) and after acrosome reaction
(B). Sperm head contains all cell or-
ganelles except flagellum.
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permeability changes, and the AR, are blocked by dihy-
dropyridines (123, 128, 129). Similar observations using
the homologous AR-inducing component have been
made in mammals and in many other sperm species
(reviewed in Ref. 68).

B. Planar Bilayers

The availability of large quantities of sperm allows
the isolation and characterization of plasma membrane
fractions from the different regions of the cell. A mature
sea urchin male can provide up to ;5 3 1010 sperm,

whereas a mature mouse can provide ;108 sperm. The
isolated sperm plasma membrane vesicles can be reas-
sembled in various model systems to study sperm ion
channels (Fig. 3, A and B; reviewed in Refs. 67, 68). The
first single-channel recordings from sea urchin sperm
were obtained in bilayers made at the tip of patch-clamp
pipettes from monolayers generated from a mixture of
lipid vesicles and isolated sea urchin sperm flagellar mem-
branes (181). Thereafter, the fusion of isolated sperm
plasma membranes from various species into black lipid
membranes (BLM) revealed the presence of several types
of ion channels (Table 1).

FIG. 2. Ca21 channel blockers inhibit membrane potential (EM), intracellular pH (pHi), and intracellular Ca21

concentration ([Ca21]i) changes induced by egg factor (F) that triggers acrosome reaction (AR) in S. purpuratus sperm.
Black vertical line indicates addition of F. Increases in measured parameters correspond to upward deflections. Percent
numbers above traces indicate AR determined by phase-contrast microscopy. Fluorescent probes used are shown on left:
a cyanine dye DisC3-(5) for EM, BCECF for pHi, and fura 2 for [Ca21]i. Sperm were loaded overnight with permeant fura
2-AM or BCECF-AM dyes at 4°C in 0Ca artificial seawater, pH 7.0, for pHi and [Ca21]i measurements, respectively. For
EM determinations, cells were preequilibrated with 500 nM DisC3(5) for 2–3 min (see Ref. 67 for experimental details).
Nifedipine (Nife) and nisoldipine (Nisol) were used.
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C. Transfer of Ion Channels to Planar Bilayers

Directly From Spermatozoa

An alternative to circumvent the sperm size limita-
tion is the transfer of ion channels from live sperm to BLM
(21) (Fig. 3E). The probability of ion channel transfer is at
least doubled by the AR, both in sea urchin and in mouse

sperm. Cell-cell interactions, such as sperm-egg fusion,
can be explored using this new strategy (21).

D. Patch Clamp

Although the planar bilayer experiments described
above have yielded important information regarding the

FIG. 3. Electrophysiological strategies to study ion channels in sperm and spermatogenic cells. An example of a channel
detected with each technique is illustrated, indicating main ion transported and single-channel conductance (g) in pS (see Table 1
for ionic conditions). A: bilayers at tip of a patch-clamp pipette. C, closed channel. B: black lipid membranes (BLM) with fused sperm
plasma membranes. C: mouse sperm on-cell patch-clamp recordings of a niflumic acid (NA)-sensitive Cl2 channel. (From Sánchez
and A. Darszon, unpublished data). D: one-cell patch-clamp recordings in osmotically swollen sea urchin sperm. E: direct ion
channel transfer from sperm to BLM. F: photograph of purified mouse pachytene spermatocytes. [From Bellvé et al. (20).] Right

shows T-type Ca21 currents recorded from mouse pachytene spermatocytes are reversibly blocked by nifedipine.
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properties of sperm ion channels, it is desirable to directly
record them in the cell. The development by Neher and
Sackman of the patch-clamp technique in the 1970s,
which revolutionized cell physiology, did not have a cru-
cial impact in the sperm front. The reason for this is easy
to understand: because they are tiny and have a complex
morphology, sperm are tough nuts to crack, even for the
patch clamp. Despite this, single channels were recorded
directly from sea urchin sperm heads using the patch-
clamp technique. Single-channel transitions were docu-

mented (Table 1), one of which was K1 selective (130).
Recently, it was possible also to obtain patch-clamp re-
cordings from the head of mouse sperm (85).

To overcome the sperm size limitation, sea urchin
sperm have been swollen in diluted seawater. Swollen
sperm are spherical (;4 mm diameter) and can be
patch clamped (13; Fig. 3D). They can regulate their EM,
pHi, and [Ca21]i. Swelling S. purpuratus sperm im-
proved the success rate of sealing from 1% in nonswol-
len cells to .20%. Patch-clamp experiments revealed

TABLE 1. Ion channel classes in sperm cells

Source/Channel
Property Method Type of Channel Gating Properties g, pS Blockers Cloned?

Reference
No.

Sea urchin/single-
channel current

Planar bilayer
reconstitution

K1 selective ? 22, 46a TEA 2 181

Patch clamp K1 selective ? 60, 172b ? 2 130
Patch clamp K1 selective Activated by

Speract
2–5c ? 2 13

Planar bilayer
reconstitution;
heterologous
expression

K1 selective Upward
modulated by
cAMP; gated
by voltage

103d TEA, Ba21 2
1

118, 163

Mouse/single-
channel current

Heterologous
expression

K1 selective Gated by
voltage; pH
sensitive

106e ? 1 256

Rat/single-channel
current

Planar bilayer
reconstitution

K1 selective ? 24f ? 2 40

Planar bilayer
reconstitution

Na1 selective ? 109f ? 2 40

Sea urchin/single-
channel current

Planar bilayer
reconstitution

Cation selective ? 82g ? 2 181

Mouse/single-
channel current

Planar bilayer
reconstitution

Cation selective ? 103h ? 2 164

Patch clamp Cation selective ? 23, 318i ? 2 85
Bovine/macroscopic

current
Heterologous

expression
Cation selective Gated by cGMP ? 1 312

Human/single-
channel current

Planar bilayer
reconstitution

Cation selective ? 130,j

29k, 65k
? 2 324

40
Sea urchin/single-

channel current
Planar bilayer

reconstitution
Ca21 selective Gated by voltage 172l Mg21, Co21, Cd21 2 21, 183

Boar/single-channel
current

Planar bilayer
reconstitution

Ca21 selective
(L type?)

Weak voltage
dependence

16m(Nitrendipine,
(R22)-BAY K
8644,

2
2

283

Mouse/single-
channel current

Planar bilayer
reconstitution

Ca21 selective Gated by voltage 381n Co21,
ruthenium red

2 21

Mouse/macroscopic
current and
monitored on
spermatogenic
cells

Patch clamp Ca21 selective
T-type channel

Gated by voltage Nifedipine,
amiloride,
pimozide, Ni21

2 7, 182, 246

Sea urchin/single-
channel current

Planar bilayer
reconstitution

Cl2 selective ? 148o DIDS 2 208

Mouse/single-
channel current

Patch clamp Cl2 selective Gated by voltage 41p Niflumic acid,
(F2?)

2 85

Mouse, rat/single-
channel current

Planar bilayer
reconstitution

Cl2 selective ? 83q

15f
? 2 164

40

Ionic conditions (in mM) in which single-channel conductance (g) was obtained are as follows: asymmetrical, 100 KCl; bcell excised,
486 NaCl in pipette/10 KCl in bath; ccell attached, 7.5 or 25 potassium gluconate in pipette; dsymmetrical, 100 KCl; esymmetrical, 213
KCl; f100 KCl cis/200 NaCl, 300 mM KCl trans; gsymmetrical, 100 KCl; h600 KCl cis/100 NaCl trans; i23-pS channel, cell-excised
patch, 145 NaCl in bath/120 CsCl in pipette; 318-pS channel, cell-excised patch, 145 NaCl in bath/90 KCl in pipette; jsymmetrical 100
NaCl; k200 KCl cis/100 KCl trans; lsymmetrical, 50 CaCl2, 25 BaCl2, 125 KCl cis/25 BaCl2 trans; m100 BaCl2, 50 NaCl cis/50 NaCl
trans; n200 KCl cis/25 BaCl2 trans, 600 KCl cis/100 NaCl trans; osymmetrical, 100 KCl; pcell-attached, 120 NaCl, 30 NaF in pipette;

q600 KCl cis/100 KCl trans.
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the presence of a K1-selective channel. Swollen sea
urchin sperm open new possibilities to directly study
ion channel regulation (13).

E. Molecular Cloning and Heterologous Expression

Many physiologically relevant ion channels have
been sequenced (140). Now, testicular libraries are being
tested with probes designed for specific channels and
receptors. It is interesting that members of the olfactory
receptor gene family have been found in spermatogenic
cells and in mature mammalian spermatozoa (296). With
the consideration of the involvement of cyclic nucleotides
in the physiology of sperm (reviewed in Ref. 68), it is not
surprising that the first sperm channel to be cloned using
a bovine testis library was a cyclic nucleotide-gated
(CNG) cation channel (312, see sect. IIID1). This impor-
tant contribution was followed by the cloning of a some-
what atypical pH- and voltage-dependent K1 channel
(256) and a sea urchin sperm cAMP-modulated mildly
K1-selective channel (118). This channel, named SPIH,
together with a similar hyperpolarization-activated cation
channel found in spontaneously active neurons and heart
(189) are the first cyclic nucleotide-modulated K1-selec-
tive channels cloned in animal cells.

F. Spermatogenic Cells

In addition to being very small and difficult to study
electrophysiologically, spermatozoa are differentiated ter-
minal cells unable to make proteins. Thus gene expres-
sion and protein assembly have to be studied in the
progenitor spermatogenic cells. Spermatogenesis is a
striking process where spermatogonia divide producing
spermatocytes which undergo meiosis and yield sperma-
tids that differentiate and mature into spermatozoa (11,
20). Pachytene spermatocytes, and round and condensing
spermatids, are at the later stages of differentiation and
are translationally active and much larger than sperm,
therefore easier to patch clamp (7, 8, 131, 182, 246; see
Fig. 3).

Back in 1984 when Hagiwara and Kawa (131) re-
ported the first whole cell recordings from spermatogenic
cells, only a couple of electrophysiological studies (intra-
cellular recording) had attempted to investigate sperm
cells (186, 195). Hagiwara and Kawa (131) concentrated
their attention on late primary spermatocytes and early
spermatids which, in adult rats (.80 days old), are most
abundant (;80% of dissociated cells). Dissociated, late
primary spermatocytes are 16–18 mm in diameter and
exhibit a large nucleus with condensed chromatin. Disso-
ciated early condensing spermatids are smaller in diame-
ter (11–14 mm) and display a short flagellum as well as a
developing acrosomal vesicle on the nucleus. Transient

inward Ca21 currents whose density increased during
spermatogenesis, from spermatogonia to early sperma-
tids, were described. These cells also displayed slowly
developing voltage-dependent K1 outward currents
blocked by tetraethylammonium ion (TEA1), and insen-
sitive to external Ca21, that significantly decreased during
spermatogenesis. These observations suggest that distinct
expression of ion channels during spermatogenesis may
influence differentiation (131). In addition, Hagiwara and
Kawa’s paper (131) indicated “ . . . genes for ionic chan-
nels and receptors, which have been considered to be
characteristic of excitable tissues, can be expressed and
function at early stages of embryogenesis.” This predic-
tion has been proven to be correct (182, 256). Further-
more, some of these channels end up in mature sperm,
determining their physiological properties.

The resting EM of rat spermatids has been estimated
using a EM-sensitive dye in suspension (222 mV; Ref. 236)
and in single cells (257 mV; Ref. 223). These cells regulate
their pHi by means of a V-type H1-ATPase, a HCO3

2 entry
pathway, a Na1/HCO3

2-dependent transport system, and a
putative H1-conductive pathway. Apparently, rat sperma-
tids do not have base extruder transport systems. Their
pHi regulation seems tuned to manage acid challenges
(223).

Regulation of [Ca21]i is likely to be important for
spermatogenesis and is critical for sperm maturation, ca-
pacitation, and AR. Because of this, the genotypic and
phenotypic expression of voltage-dependent Ca21 chan-
nels (VDCC) (7, 182, 246) as well as the role of Ca21

internal stores in determining [Ca21]i are being studied in
spermatogenic cells (247, 285). The functional findings
relevant for sperm are discussed in section VC.

Messenger RNA for the three inositol 1,4,5-triphos-
phate receptor (IP3R) subtypes (I, II, and III) were de-
tected in spermatogonia as well as in all subsequent
stages of spermatogenesis (285). Antibodies raised
against mammalian IP3R revealed distinct distribution
patterns of the mature receptor during sperm differentia-
tion. At early stages, IP3R are homogeneously distributed
throughout the cytoplasm, and as differentiation pro-
ceeds, they become selectively localized to the Golgi com-
plex. Consistent with this distribution pattern, spermato-
gonia undergo a large intracellular Ca21 release in
response to Ca21-ATPase inhibitor thapsigargin, whereas
smaller responses were detected in late spermatocytes
and spermatids (285).

The cytoplasmic distribution of IP3R and the larger
Ca21 release responses found in spermatogonia suggest
that IP3R could be involved in cell proliferation at this
stage. This notion received support from experiments
with a spermatogenic derived cell line showing that de-
pletion of intracellular Ca21 pools after thapsigargin treat-
ment dramatically inhibits cell division. On the other
hand, incubation with an antisense oligonucleotide used
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to arrest the synthesis of functional type I IP3R com-
pletely inhibited proliferation (285).

The three known genes (I, II, and III) encoding for
ryanodine receptor proteins (RyR) are expressed at all
stages of spermatogenesis. However, specific antibodies
raised against each of the RyR subtypes indicate that only
types I and III are present in spermatogenic cells. In
contrast to IP3R, which undergo a dramatic subcellular
redistribution, RyR remain homogeneously scattered in
the cytoplasm at all stages of differentiation. In mature
sperm, only type III RyR was detected immunocytochem-
ically. Functional responses to caffeine and ryanodine
were completely absent in spermatogenic cells and in
mature sperm. Thus IP3R may participate more signifi-
cantly in spermatogenesis, particularly during cell prolif-
eration, than RyR (285).

III. ION CHANNELS AND SPERM ACTIVATION

A. Sea Urchin

Spermatozoa cannot swim in the sea urchin male
gonads because the high CO2 tension in semen maintains
pHi acid (;7.2) with respect to seawater (150). Dynein,
the ATPase that drives the flagella, is inactive below pH
7.3, repressing motility and respiration (42, 174). Spawn-
ing decreases the CO2 concentration surrounding sperm
as well as induces H1 release, a pHi increase to ;7.4, and
dynein activation. Production of ADP activates mitochon-
drial respiration 50-fold and initiates motility (42, 150,
220). A phosphocreatine shuttle allows the energy pro-
duced in the mitochondria to reach the flagella (284).

The activation of motility depends on the concentra-
tion of external Na1 ([Na1]o), external K1 ([K1]o), and
pHi (27, 42, 43, 150, 174). Sea urchin sperm possess a
Na1/H1 exchange activity in the flagella (169, 170) that
has been studied in flagellar vesicles. This Na1/H1 ex-
change is unusual in that it is amiloride insensitive and
Mg21 and voltage dependent (169, 170, 171, 173). By keep-
ing intracellular Na1 ([Na1]i) low, the Na1-K1-ATPase
contributes to pHi regulation (117). Zinc also modulates
pHi (45).

1. K1 channels

The sea urchin sperm resting EM (236 to 256 mV) is
influenced by [K1]o (114, 251). Sperm activation is inhib-
ited when [K1]o is 100 mM in seawater. These results
suggest the presence of K1 channels in the plasma mem-
brane of these cells. Two of the three types of cation-
selective single-channel transitions identified in tip-dip
formed bilayers were blocked by TEA1, indicating they
were due to K1 channels (Table 1) (181). Single channels
were also recorded directly from sea urchin sperm heads

using the patch-clamp technique (Table 1), one of which
was K1 selective (130). Because [K1]o is higher in semen
than in seawater (44), spawning could hyperpolarize
sperm. The hyperpolarization could stimulate the voltage-
dependent Na1/H1 exchange and contribute to the pHi

rise that accompanies sperm activation. It has been
shown that the sea urchin adenylyl cyclase (AC) is mod-
ulated by voltage (22). A cAMP increase may activate a
cAMP-dependent protein kinase (PKA), which phosphor-
ylates axonemal proteins contributing to sperm motility
(106, 209).

B. Salmonid Fish

It has been known since 1938 that millimolar [K1]o in
the seminal tract is primarily responsible for keeping
trout sperm inactive (255). Morisawa and Suzuki (214)
further investigated this phenomena and showed that sal-
monid fish sperm motility can be initiated in K1-free
medium, and not in K1-supplemented medium, which is
similar to the seminal fluid. This group also showed that
cAMP increases and reaches a plateau seconds after sus-
pending trout sperm in K1-free medium (211). This cAMP
elevation is required for motility initiation (213), which
involves the cAMP-dependent phosphorylation of a 15-
kDa axonemal protein (210).

Although [K1]o and cAMP were known to influence
motility, their relationship was unknown. Potassium
channel blockers like, TEA1, nonyltriethylammonium1,
Ba21, and Cs1, inhibited sperm motility initiation (278).
Potassium was shown to contribute to the resting EM of
trout sperm (115); therefore, a membrane hyperpolariza-
tion caused by sperm suspension in low [K1]o could be
the first step in this signal cascade. Divalent cations,
including Ca21, Mg21, and Sr21, can initiate trout sperm
motility even in K1-supplemented medium (278). Boitano
and Omoto (31) proposed that divalent cations can mask
the surface potential of trout sperm membrane, leading to
a hyperpolarization. They demonstrated that a hyperpo-
larization induced with Cs1 and valinomycin in K1-sup-
plemented medium could initiate motility. These results
indicated that K1 efflux through sperm plasma membrane
K1 channels would lead to a hyperpolarization under
physiological conditions (31). Recently, K1 efflux from
salmonid sperm was measured upon initiation of sperm
motility in K1-free medium (277).

Calcium is also thought to be important for initiating
salmonid sperm motility. The Ca21 channel blockers ve-
rapamil (278) and desmethoxyverapamil (53) inhibit
sperm motility initiation in K1-free media. In this medium,
sperm AC activity is higher in the presence than in the
absence of external Ca21 ([Ca21]o) (211). Uptake of
45Ca21 is accelerated in trout sperm incubated in K1-free
medium (277). The Ca21-sensitive fluorescent probes
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have indicated [Ca21]i increases in single sperm (277) and
in sperm populations (32, 53) upon initiation of motility. A
transient [Ca21]i elevation was detected in Ca21-free me-
dium after providing hyperpolarization by addition of
Mg21 (32). The contribution of [Ca21]o and internal Ca21

stores to the [Ca21]i increase that occurs when motility is
initiated still remains to be established. The river water
into which sperm are spawned contains 0.3–0.4 mM Ca21,
enough to contribute to Ca21 influx through specific
sperm plasma membrane Ca21 channels under physiolog-
ical conditions. In salmonid sperm, there is no evidence
that pHi increases accompany sperm motility initiation
(31).

C. Teleosts and Amphibians

An osmolarity change is a key factor for sperm mo-
tility initiation among many species of teleosts and am-
phibians. In marine teleosts, such as puffer fish, sperma-
tozoa start swimming upon incubating them in a
hypertonic medium regardless of the presence of electro-
lytes (214). On the contrary, in freshwater teleosts, such
as goldfish and zebrafish, and amphibians, such as newt,
sperm start swimming when treated with hypotonic solu-
tions (136, 214). The conditions described above corre-
spond to the physiological environments found by these
animals when spawned. Unlike salmonid fish, K1 efflux-
dependent hyperpolarization is not required to initiate
sperm motility in these species. Instead, changes in intra-
cellular ion concentration caused by swelling or shrink-
age, according to external osmolarity, appear to regulate
sperm motility in marine and freshwater teleosts (276). In
addition, high pHi seems preferable for the initiation of
sperm motility, whereas it is not clear whether sperm pHi

increases or decreases upon hypertonic treatment in ma-
rine teleosts (221, 276). The initiation of sperm motility in
marine teleosts appears to also involve an increase in
[Ca21]i derived from intracellular Ca21 stores (221).

D. Mammals

The ionic environment encountered by spermatozoa
in its journey through the epididymis undergoes signifi-
cant changes. In the caput, [Na1]o is higher than 100 mM
and decreases to ,50 mM in the cauda (149), whereas
[K1]o rises from ;20 to ;40 mM in these two regions. The
mouse sperm membrane resting potential is determined
mainly by K1 (84, 326), whose internal concentration has
been estimated to be ;120 mM both in bull (12) and in
human (185). Increasing [K1]o can thus depolarize the cell
and open voltage-dependent Ca21 channels (14, 21, 55,
92), possibly triggering premature AR. Nonetheless, the
decrease in [Na1]o, which acidifies pHi (327), and the low
Ca21 concentration in epididymal fluids (149), would

compensate the tendency to open Ca21 channels, prevent-
ing spontaneous AR. As discussed below, an alkaline pHi

is necessary for capacitation and AR (10, 327).
Sperm must undergo capacitation, and thereafter the

AR, to fertilize the egg. The most significant changes
experienced by sperm during capacitation are reorganiza-
tion (in composition and topology) of sperm surface an-
tigens, changes in plasma membrane permeability, in-
creases in intracellular second messengers (cAMP, IP3,
diacylglycerol), and increased phosphorylation of a set of
proteins by different kinases (16, 270, 300, 313).

During sperm maturation, [Ca21]i progressively rises
in some species (15, 69), leading to hyperactivated motil-
ity (313) and spontaneous AR (319). Seminal plasma fac-
tors and other factors present in the female fluids in vivo
or added to the capacitating media (165, 319) can regulate
[Ca21]i and sperm capacitation (30, 222). For instance,
caltrin, a seminal plasma protein, inhibits sperm 45Ca21

uptake (46, 243). It has been reported that heparin, which
is required for bovine sperm in vitro capacitation, regu-
lates [Ca21]i by modulating voltage-dependent Ca21 chan-
nels possibly binding to specific plasma membrane recep-
tors (37, 52, 227). A minimum of 90 mM [Ca21]o is required
for mouse sperm capacitation (101), but it may differ for
human sperm (78). The role of internal Ca21 stores in
capacitation is not yet understood. Calreticulin, a Ca21-
binding protein (217), and the IP3R (285, 303) have been
detected in the acrosome of several mammalian species,
indicating that Ca21 may be stored and released from this
organelle. Compounds that favor Ca21 release from inter-
nal stores, like thapsigargin, appear to accelerate this
process (204).

The lipid content of membranes may modulate their
fluidity and ion channel activity (18, 41, 190). Bovine
serum albumin scavenging of cholesterol during capaci-
tation (121) is thought to change the membrane fluidity
and the permeability to Ca21 and HCO3

2 (301). Protein
phosphorylation during mouse (299, 301), bovine (103),
and human sperm capacitation (16) are modulated by
[Ca21]o as well as @HCO3

2#o. Hyperactivation and phos-
phorylation of several proteins by tyrosine kinase require
HCO3

2 in the capacitating media. These effects may be due
to cAMP increases mediated by AC (29, 261, 299, 301). The
increase in cAMP activates PKA, which in turn stimulates
tyrosine kinases, which finally phosphorylate a set of
proteins important for capacitation (300).

The influence of pHi on maturation and capacitation
is an open question (313). Changes in extracellular pH
(pHo) linearly affect sperm pHi (116, 132, 327). In mouse
sperm, pHi increases during capacitation mainly through
a Na1-, Cl2-, and HCO3

2-dependent mechanism (327). This
pHi increase also occurs in bovine (291, 302) and human
sperm, where it has been related to sperm cholesterol
content (57). Bovine sperm exposed to PKA inhibitors
undergo the normal pHi changes during capacitation
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(103), implying that internal alkalinization precedes PKA
activation or that both processes are independent. The
second option seems more likely (at least in mouse
sperm), since alkaline pHo, which should elevate pHi,
does not substitute for HCO3

2 depletion, indicating that
HCO3

2 itself stimulates AC and not through a pHi increase
(301). As mentioned above, considering that pHi may
influence sperm Ca21 permeability (14, 68), an acidic pHi

may contribute to maintain EM (38) and to maintain
[Ca21]i low, thus preventing untimely AR.

Capacitation in bovine and mouse sperm is accom-
panied by K1 permeability increases that hyperpolarize
the cells from around 230 to 260 mV (326). This hyper-
polarization could stimulate AC if it is similar to the sea
urchin sperm AC (22). Increases in cAMP would activate
PKA, leading to protein phosphorylation. The hyperpolar-
ization would also affect voltage-dependent channels, es-
pecially the T-type Ca21 channels likely to be present in
sperm (see sect. V) (182). A subtle balance must persist
between conditions that promote premature AR and
those that counterbalance the environmental changes so
that only the tightest and fittest sperm survive the excur-
sion through the epididymis and the female reproductive
tract to achieve fertilization.

1. Cyclic nucleotide-gated channels

The presence of CNG channels in mammalian sperm
was suspected since cAMP and Ca21 levels are important
modulators of motility (also capacitation and the AR).
Indeed, the first sperm channel to be cloned using a
bovine testis library was a CNG cation channel (312). The
CNG channels are heteroligomeric complexes made from
at least two subunits (a and b). The a-subunit displays the
channel activity, whereas b alone is not functionally ac-
tive. However, coexpression of a- and b-subunits yields
channel species with different properties when compared
with homoligomeric channels (reviewed in Ref. 152). The
a-subunit from bovine testis was cloned first (312) and
shows 78% amino acid sequence homology to CNG chan-
nels in chicken photoreceptors. It contains the cyclic
nucleotide binding site, pore sequence, transmembrane
segments, and S4-voltage sensor motif characteristic of
the CNG channel family. When expressed in Xenopus

oocytes, its single-channel conductance is 20 pS (Table 1).
The channel selects poorly between Na1 and K1, is
blocked by Mg21, and exhibits permeability to Ca21.
Guanosine 39,59-cyclic monophosphate [dissociation con-
stant (Kd) 5 8.3 mM, Hill coefficient 5 2.6] is far more
effective in activating the bovine testis channel than
cAMP (Kd 5 1,700 mM, Hill coefficient 5 1.5). Small
cGMP-induced currents associated with single-channel
transitions of ,10 pS were detected in vesicles thought to
be sperm cytoplasmic droplets. Inside-out patches from

human and bovine sperm responded to cGMP with similar
small currents (312).

Very recently, one short and several long less abun-
dant transcripts of CNG channels b-subunits were identi-
fied in bovine testis (315). Immunodetection showed that
the a-subunit is present along the entire sperm flagellum,
whereas the short b-subunit is only found in the principal
piece of the flagellum. These sperm CNG channels per-
meate Ca21 and are more sensitive to cGMP than to
cAMP. If various types of CNG channels have different
permeability to Ca21 and are distinctly localized in the
flagellum, as indicated by the dissimilar localization of the
a- and b-subunits, then Ca21 microdomains may exist.
This could be the basis for flagellar bending control (315).

IV. SPERM ION CHANNEL REGULATION BY

DIFFUSIBLE EGG COMPONENTS

External fertilizers undergo an immense dilution
upon spawning. Gamete encounter demands information
about their whereabouts. Although sperm in internal fer-
tilizers have a determined trajectory through the female
reproductive tract, gamete interaction also requires sig-
nals that prepare them for fertilization and promote pref-
erential interactions of the egg with the fittest sperm.
Some of these signals stimulate vectorial sperm move-
ment toward the egg (chemotaxis) and/or enhance their
motility and metabolism (chemokinesis). It has been re-
ported that secretions from the egg or from the female
reproductive organs may cause chemotaxis and/or che-
mokinesis in plant and animal sperm (206, 209).

A. Sea Urchin

The metabolic state and motility of sperm are altered,
species specifically (with restrictions), by small peptides
(;10–14 amino acids) contained in the jelly surrounding
the egg. Possibly, these peptides may also facilitate AR,
acting in concert with the main egg jelly inductor of this
process (263, 318; but see Ref. 294).

Speract, a decapeptide (Gly-Phe-Asp-Leu-Asn-Gly-
Gly-Gly-Val-Gly) isolated from S. purpuratus and Hemi-

centrotus pulcherrimus egg jelly, stimulates at picomolar
concentrations and pHo 6.6, sperm phospholipid metabo-
lism, respiration, and motility (134, 275). In normal sea-
water, this peptide induces complex plasma membrane
permeability changes in sea urchin spermatozoa. Speract
and resact (Cys-Val-Thr-Gly-Ala-Pro-Gly-Cys-Val-Gly-Gly-
Gly-Arg-Leu), a similar peptide from Arbacia punctulata

eggs (275), stimulate sperm uptake of 22Na1 and 45Ca21,
and H1 and K1 release, at nanomolar concentrations
(133, 173, 235). As a result of these permeability changes,
[Ca21]i and pHi increase (250). Furthermore, these pep-
tides elevate the cGMP and cAMP levels (106, 157).
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Speract analogs cross-link to a 77-kDa transmem-
brane peptide in S. purpuratus sperm (64) that has been
cloned (63, 65). The speract-receptor complex transiently
activates the sperm membrane guanylyl cyclase (GC)
(106). Resact (nM) directly stimulates this GC in A.

punctulata (264). The sea urchin resact receptor was the
first sequenced member of a family of GC that are major
regulators of cell physiology (107, 266).

Speract (nM) induces a K1-dependent hyperpolariza-
tion in S. purpuratus sperm flagella and flagellar plasma
membrane vesicles (106, 173). Starting at picomolar con-
centrations, this peptide causes a TEA1-insensitive, K1

permeability increase in swollen sea urchin sperm that is
mediated by K1-selective channels, as shown in patch-
clamp experiments (13, see Fig. 3D). The speract-induced
hyperpolarization activates a Na1/H1 exchange in swol-
len (13, 49, 237) and nonswollen sperm, whose stoichiom-
etry was estimated to be 1:1 from measurements of 22Na1

influx and pHi using BCECF (169, 170, 250). Although this
exchange is electroneutral, it is stimulated by the speract-
induced hyperpolarization (169). It would be important to
confirm the stoichiometry of this exchange using methods
that have equal time resolution. The speract-induced pHi

increase dephosphorylates GC and reduces its activity
(25, 233, 274, 306–308); it stimulates AC, which is pHi (49,
50), EM (22), and Ca21 sensitive (106). The cGMP de-
crease may lower K1 permeability and repolarize sperm
(49). Lee (172) suggested the participation of G proteins
in the speract-induced hyperpolarization, since guanosine
59-O-(3-thiotriphosphate) stimulates it in flagellar vesicles.
Although sea urchin sperm contain Gi (24, 158), Gs, and
low-molecular-weight G proteins (39, 58), their role in sea
urchin sperm physiology remains to be established.

In swollen (13, 49, 237) and nonswollen sperm (22,
162), speract (.100 pM) induces a Ca21-dependent depo-
larization after the hyperpolarization and transiently in-
creases [Ca21]i, possibly opening a Ca21-permeable chan-
nel. Such a channel appears to be regulated by cAMP and
allows Mn21 through (50). It has not been ruled out that,
as in photoreceptors and mouse sperm, cGMP could also
upregulate a cation-selective channel permeable to Ca21

(152, 312, 315). A Na1/Ca21 exchanger probably contrib-
utes to the speract-induced [Ca21]i increase and to [Ca21]i

regulation (250).
Sperm from A. punctulata are attracted by nanomo-

lar resact, changing their swimming pattern from a circu-
lar to a straighter trajectory; [Ca21]o is required for the
response. Only in this species has chemotaxis been dem-
onstrated (305). In S. purpuratus sperm, the simulta-
neous addition of 50 nM speract and 100 mM IBMX, a
phosphodiesterase inhibitor, produces asymmetric flagel-
lar movements (51). These results have been used to
derive an interesting model to explain how sperm may
detect an increasing egg peptide gradient over a broad
concentration range (51; see Ref. 68 for discussion). The

drawback of this work is that the simultaneous addition
of IBMX and speract is not a physiological condition, and
it induces AR (250). A working model for the action
mechanism of speract that incorporates the available in-
formation is presented in Figure 4.

The transmembrane topographical homology be-
tween the somatic AC and various ion channels and trans-
porters led to the proposal, not yet demonstrated, that
this protein might have a dual life, converting ATP to
cAMP and operating as an ion channel (160). An AC not
modulated by G proteins, and stimulated by hyperpolar-
ization, was described in Paramecium (257). The sea
urchin sperm AC is modulated by pHi and [Ca21]i (49, 50,
106) and appears to be insensitive to G proteins (106,
139). Sea urchin sperm hyperpolarization stimulates this
AC independently of [Ca21]i and pHi (22). Because sperm
hyperpolarization is induced by egg outer envelope com-
ponents, such as speract (reviewed in Ref. 68), EM acti-
vation of AC could modulate sperm motility, chemotaxis,
and AR. It will be interesting to explore if mammalian and
fish sperm AC are also voltage dependent. A few somatic
cell AC have been shown to be regulated by EM (234).

1. Cyclic nucleotide-gated channels

It is likely that two cAMP-regulated ion channels with
distinct selectivity and pharmacology may contribute to
the depolarization triggered by nanomolar speract in
sperm: a Ca21 channel (13, 50, 66) and a poorly selective
K1 channel that was detected in planar lipid bilayers
(163). In bilayers exposed to symmetrical 100 mM KCl,
this latter channel has a single-channel conductance of
103 pS. Its open probability is low and weakly voltage
dependent, increasing at negative potentials. Addition of
cAMP to the cis-side increases the open probability of the
channel in a dose-dependent and reversible fashion (Fig.
3B). The channel does not allow Ca21 through, is blocked
in a voltage-dependent fashion by millimolar Ba21 or TEA
in the trans-side, and displays a low PK/PNa of ;5, indi-
cating a sizable permeability to Na1 (163). Because sea-
water contains ;0.5 M Na1, and in sea urchin sperm cells,
[K1]i 5 0.18 M, the reversal potential of this cAMP-mod-
ulated channel in the sea is close to 210 mV, 30 mV more
positive than the sperm resting potential. Thus its opening
in seawater would depolarize sperm. The cAMP depen-
dence, selectivity, and pharmacological profile of this
channel suggest it participates in the Na1-dependent sper-
act-induced repolarization in sea urchin sperm (163). The
EM studies in S. purpuratus sperm are consistent with
this proposal (162, 237).

A cAMP-regulated K1 channel has been cloned from
sea urchin testis and functionally expressed in HEK 293
cells (118). The cDNA encodes a 767-amino acid polypep-
tide (molecular mass ;88 kDa) named SPIH with signif-
icant sequence similarity to CNG and ether-a-gogo (EAG/
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HERG) channels. This similarity is particularly notorious
in transmembrane segments S3 and S5, in segment S4 or
voltage-sensing region, as well as in the pore and cyclic
nucleotide binding domains. On the other hand, the volt-
age sensor of SPIH is peculiar in that it exhibits a long
string of regularly spaced positively charged amino acids,
interrupted by a serine residue located right at the center
of the motif. Other K1 channels, like Shaker and EAG/
HERG, display an arginine at this position (152). The pore
region of SPIH has the GYG triplet characteristic of K1

channel pores, but in addition, it exhibits two positively
charged residues and lacks the threonine cluster which, in
Shaker channels, determines K1 selectivity (76, 137). The
cyclic nucleotide binding region of SPIH is similar to
other cyclic nucleotide binding proteins (152). In addi-
tion, SPIH contains sites for potential phosphorylation by
PKA, cGMP-dependent protein kinase, Ca21-dependent

protein kinase (PKC), and tyrosine kinase. Functional
SPIH channels exist in a phosphorylated form when ex-
pressed in HEK 293 cells (118). They resemble voltage-
gated If K1 currents from pacemaker sinoatrial node myo-
cytes. These channels are gated by hyperpolarization and
are upwardly modulated by cAMP and phosphorylation
(1). This channel has also been cloned recently and is
present in heart and brain (189, 248). Thus a family of
channels activated by hyperpolarization and cAMP exists
that are important in determining the resting EM, depolar-
izing cells, and limiting their hyperpolarization currents
(72, 118, 166, 189, 248).

Whole cell and excised patch-clamp recordings of
SPIH channels expressed in HEK 293 cells showed that
these channels are closed at voltages more positive than
10 mV and opened by membrane hyperpolarization (118).
A voltage jump from a holding potential of 10 mV to more

FIG. 4. Regulation model of main ion transport systems involved in sea urchin sperm responses to small egg peptides.
Resact directly activates A. punctulata sperm flagellar guanylyl cyclase (GC; 1), whereas in S. purpuratus sperm,
speract indirectly activates GC after binding to its receptor (2). Two different receptors to speractlike peptides have been
detected (323). After a momentary concentration increase, cGMP directly or after Xn steps, opens a K1 channel (3)
which transiently hyperpolarizes sperm. This hyperpolarization enhances Na1/H1 exchange (4), stimulates adenylyl
cyclase (AC; 5), which is also sensitive to pHi, and activates a cation channel (6), studied in bilayers and recently cloned,
that is directly regulated by cAMP. Because of its poor K1/Na1 selectivity, this channel depolarizes sperm. Depolariza-
tion and increase in cAMP concentration may stimulate an ill-defined Ca21 channel (7). Combined changes in pHi, [Na1]i,
and EM could lead to reverse Na1/Ca21 exchange (8). GC (1), some kinases, phosphatases, and phosphodiesterases may
be pHi sensitive.
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negative voltages induces an early current (“instant cur-
rent”), which then increases in sigmoidal fashion, reaches
a peak in 20–100 ms, and relaxes nearly exponentially to
a lower steady-state value. This complex behavior sug-
gests that the channel displays involved kinetic proper-
ties, including more than one activation process and in-
activation. Steady-state activation of SPIH channels,
assessed from instant currents, were well described by a
Boltzmann function with V1/2 5 226 mV and apparent
gating charge 5 3.5, in the whole cell configuration.
Steady-state activation curves shift to the left by as much
as 30 mV in excised patches, where it was found that
cAMP (K0.5 5 0.74 mM), but not cGMP, directly and
reversibly upwardly modulates the SPIH channel in a
hyperbolic ratio. Adenosine 39,59-cyclic monophosphate
acts by increasing channel open probability and stabiliz-
ing the peak currents. Permeability ratios indicated that
the selectivity sequence of SPIH is as follows: K1 . Rb1

. Na1 . Li1 . Cs1, with PK/PNa 5 4 (118), similar to that
of cAMP-modulated channels from sperm flagellar mem-
branes reconstituted in planar lipid bilayers (163). The
shape of the current versus voltage relation derived from
tail currents measurements was found to depend on
[K1]o. When [K1]o is high (20 mM), a fairly linear current-
voltage relation is observed. In the absence of [K1]o, but
in the presence of Na1, inward currents are abolished,
indicating that [K1]o governs ion conduction through
SPIH channels. Antibodies directed against the COOH
terminus of SPIH stained almost exclusively the sperm
flagellum. Western blots of purified flagellar and head
sperm indicated also that SPIH is preferentially in the
flagellar membrane. The SPIH channels are unique among
known K1 channels, since they can be regulated by a
myriad of mechanisms that include voltage, cAMP, phos-
phorylation, as well as [K1]o. Further work will be nec-
essary to define, in a precise way, how this intriguing K1

channel participates in sea urchin sperm physiology.

B. Ascidian

Ciona spermatozoa are immotile even after ejacula-
tion. They become motile and are attracted to eggs under
the influence of an egg factor called sperm-activating and
attracting factor (SAAF) (205, 322). The SAAF is a prote-
olysis resistant, dialyzable, small molecule. It activates
cAMP synthesis and sperm motility only in the presence
of [Ca21]o (321). The SAAF increases K1 sperm perme-
ability and fails to activate Ciona sperm in high-K1 sea-
water. A voltage-dependent K1 channel blocker, mast
cell-degranulating peptide, depresses the SAAF-induced
hyperpolarization and inhibits sperm activation. Thus K1

channels seem essential for the SAAF-induced sperm ac-
tivation in Ciona (147).

A K1 channel-mediated hyperpolarization is likely to

be the initial step for sperm motility initiation in salmonid
fish and ascidians. The possibility that sperm adenylyl
cyclase is regulated by EM, first demonstrated in sea
urchin sperm (22), could explain the link between EM,
cAMP, and motility in many species.

C. Mammals

Long-range gamete communication may also be im-
portant in mammals, even though after being delivered to
the female reproductive tract spermatozoa follow an ar-
ranged pathway toward the egg. Storage in the caudal
isthmus of the oviduct after ejaculation reduces the mo-
tility of a significant fraction of sperm from various mam-
malian species (144). Minutes after ovulation, sperm
abandon their storage sites to reach the ampullary region
(88). These results suggest that eggs or follicle cells may
release factors that activate motility and guide sperm
toward the ovulated egg. Because the sperm-to-egg ratio
is low (1:1 to 1:10) at the fertilization site, these factors
could enhance productive encounters among the fittest
gametes (309, 319).

Follicular factors have been reported to attract hu-
man spermatozoa in vivo (232, 298). Recently, it was
shown that only a small fraction of human sperm (2–12%)
undergoes chemoattraction by follicular factors. It ap-
pears that sperm acquire their chemotactic responsive-
ness as they become capacitated, a state proposed to be
transient. Thus sperm chemotaxis to follicular factors in
vivo may selectively recruit capacitated sperm for egg
fertilization (47).

V. SPERM ION CHANNELS AND THE

ACROSOME REACTION

All sperm species possessing an acrosome must un-
dergo the AR to fertilize the egg. This exocytotic reaction
enables sperm to penetrate the outer envelope of the egg
and to recognize and fuse with the egg plasma membrane
(319). This fundamental sperm process is triggered by
components from the egg’s outer layers and is modulated
by factors from the female reproductive tract in internal
fertilizers.

A. Sea Urchin

The AR is triggered when sperm encounter the jelly
layer surrounding the egg (60, 282). The egg jelly compo-
nent that triggers the AR is a fucose sulfate polymer (FSP)
(3, 109, 259, 294). This reaction encompasses acrosomal
vesicle exocytosis (60, 272), exposure of material neces-
sary for sperm-egg binding (119, 293), and extension of
the acrosomal tubule with its surrounding membrane des-
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tined to fuse with the egg (see Fig. 1) (288). Recently,
homologs of two proteins that form part of a complex
involved in the fusion of plasma and vesicle membranes
during exocytosis have been identified. These are syn-
taxin, an intracellular protein integral to the plasma mem-
brane, and vesicle-associated membrane protein (VAMP;
synaptobrevin), a protein associated with secretory vesi-
cle membrane (23). Immunoprecipitation indicates that
sea urchin sperm syntaxin and VAMP are associated with
a complex. During acrosomal exocytosis, syntaxin and
VAMP are shed with the vesicles that result from multiple
fusions of the plasma membrane over the acrosome and
the acrosomal membrane. These observations suggest
that syntaxin and VAMP participate in the AR (258).

External Ca21 and Na1 are required for the AR under
physiological conditions (48, 62, 254). Seconds after FSP
binds to sperm, Na1 and Ca21 influx as well as H1 and K1

efflux are activated (106, 108, 249, 253, 254). These ion
fluxes result in changes in EM (114, 123, 252) and in-
creases in [Ca21]i (127, 128, 286) and pHi (128, 174).
Furthermore, FSP elevates cAMP concentration (108) and
inositol 1,4,5-trisphosphate (IP3) (75) and stimulates pro-
tein kinase A (110, 112) and phospholipase D (74). Adeny-
lyl cyclase activation leads to cAMP concentration in-
creases (108), which can occur in isolated heads, when
triggered by A-23187 or nigericin. Even though the cAMP
rise depends on Ca21 uptake (311), it was reported to
precede the AR (105). How the FSP-induced permeability
changes and the second messenger levels are related is
still an open question.

The receptor for egg jelly (REJ) that triggers the AR
was cloned (215). Monoclonal antibodies (MAb) to REJ
bind to a narrow collar of plasma membrane over the
acrosome and to the entire flagellum (287). Some of them
cause large increases in [Ca21]i (286, 295) and induce the
AR (215). These MAb can also activate sperm AC (295).
Receptor for egg jelly is 1,459 amino acids. Greater than
900 amino acids are related to only one protein, which is
polycystin. Polycystin is the protein mutated in polycystic
kidney disease-1, the most frequent human genetic dis-
ease. The role of normal polycystin is unknown. REJ has
been postulated to participate in ion permeability regula-
tion (215).

In L. pictus sperm, FSP induces a transient hyperpo-
larization that is followed by a depolarization. The hyper-
polarization is K1 dependent, which suggests it is medi-
ated by K1 channels (123). The AR and the increases in
Ca21 uptake (253) and pHi (128) associated with this
reaction are blocked by rising [K1]o from 10 to 40 mM.
The pHi increase observed during the AR is Na1 depen-
dent (128, 174). These results taken together suggest that
FSP increases pHi, at least in part, by activating a Na1/H1

exchange stimulated by a hyperpolarization (124). It is not
known if the EM-sensitive Na1/H1 exchange induced by
speract participates in the pHi increase that occurs during

the AR. Neither the mechanism nor the stoichiometry of
this apparent Na1/H1 exchange associated to the AR is
known.

Some Ca21 and K1 channel blockers inhibit Ca21

uptake and the AR (108, 113, 153, 253). These observa-
tions emphasize the crucial participation of ion channels
in triggering the sperm AR. As indicated earlier, several
sperm channels have been detected in planar bilayers and
patch-clamp recordings, some of which are sensitive to
blockers, which inhibit the AR (see Fig. 3 and Table 1). In
addition, ionophores such as A-23187, a Ca21/H1 ex-
changer (48), and nigericin, a Na1 or K1/H1 exchanger
(253), that artificially alter the sperm plasma membrane
permeability induce the AR in the absence of the physio-
logical ligand.

1. Ca21 channels

[Ca21]i determinations using fluorescent Ca21-sensi-
tive dyes have revealed the participation of two different
Ca21 channels in the sea urchin sperm AR (127, 128, 249).
Binding of FSP, the factor that triggers AR, to its receptor
opens a Ca21-selective channel that inactivates and is
blocked by verapamil and dihydropyridines. Five seconds
later, a second channel opens that is insensitive to the
later blockers, does not inactivate, and is permeable to
Mn21. Inhibition of the egg jelly-induced pHi increase
associated with the AR with high [K1]o, TEA1, or in the
absence of [Na1]o prevents the opening of the second
channel and the AR. Under these conditions, a transient
rise in [Ca21]i remains, due to the opening of the first
channel. However, the two Ca21 channels are somehow
linked, since blocking the first channel inhibits the second
(127, 128). The pHi change associated with the AR is Ca21

dependent (129); therefore, the opening of the first chan-
nel could allow Ca21 in so that pHi can increase, and open
the second channel, which is regulated by pHi. Other
possible links between the two channels could be Ca21-
induced Ca21 release or the emptying of internal stores
(26) and proteolysis (86). Both channels are required
apparently for development of a normal AR (Darszon and
González-Martı́nez, unpublished data).

The fusion of isolated S. purpuratus sperm plasma
membranes into BLM revealed the presence of a voltage-
dependent high-conductance channel (183). The single
main-conducting state of the high-conductance channel
displays rare closing events at voltages more positive than
225 mV and tends to close through several subconduc-
tance states of lesser conductance at more negative po-
tentials. As in some other Ca21 channels (19), the main
state conductance size sequence is Ba21 . Sr21 . Ca21.
However, the channel discriminates poorly between diva-
lent and monovalent cations, PCa/PNa 5 5.9, and is per-
meable to Mg21 when added to the cis-side (the side of
membrane addition) (PCa/PMg 5 2.8). In contrast, addition
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of Mg21 to the trans-side blocks the channel in a voltage-
independent manner. Both Cd21 and Co21 block the chan-
nel at millimolar concentrations and also inhibit the AR
and the Ca21 uptake associated with it. This channel is
basically insensitive to verapamil and nisoldipine. Al-
though the channel is detected fusing purified flagellar
membranes to BLM, possible contamination from acroso-
mal membranes does not allow its definitive localization
(183).

Although the high-conductance Ca21 channel and the
second type of Ca21 channel that participates in the AR
share some properties (183), it remains to be established
if they are the same channel. The characteristics of the
high-conductance Ca21 channel are closer to those dis-
closed by the RyR (26) than to VDCC (267). There is
extensive homology in the pore region of the RyR and IP3

receptor, and both channels are sensitive to Ca21 and pH
(26). It is necessary to explore if any of the agonists of
these channels regulate the second Ca21 channel that
participates in the AR; alternatively, it could be a store-
operated Ca21 channel (SOC) (226).

Inositol 1,4,5-trisphosphate accumulates during the
AR and could modulate Ca21 influx (75). An IP3 binding
component obtained by affinity chromatography from S.

purpuratus sperm extracts has similar characteristics as
the IP3 receptor from other sources (325). It displays
pH-dependent high-affinity for InsP3 (dissociation con-
stant 5 200 nM), specificity (IC50 .5 mM for inositol
1-monophosphate, inositol 1,4-bisphosphate, and inositol
1,3,4,5-tetrakisphosphate, and 75% binding inhibition by
10 mg/ml heparin sodium. It is interesting that a plasma
membrane component in the sperm head was recognized
by an antibody against the COOH terminal of the type I IP3

receptor of somatic cells. Although less intensely, this
antibody also recognized a flagellar component. Consis-
tent with these findings, the antibody detected a 240-kDa
band from isolated head plasma membranes and weakly
in flagellar membranes. The presence of IP3 receptors in
the sperm plasma membrane, although somewhat contro-
versial, has been described in other systems (59, 154).
This receptor may link IP3 increases to Ca21 permeability
changes during the AR. However, IP3 regulation of the
large-conductance Ca21 channels, sensitive to Co21 and
ruthenium red, found in mouse and sea urchin sperm
plasma membranes, monitored in planar lipid bilayers,
awaits experimental demonstration (325).

2. Cl2 channels

The stilbene disulfonate DIDS that inhibits anion
channels and transporters blocks the sea urchin sperm
AR (208). A DIDS-sensitive anion channel was identified
fusing sperm plasma membranes into BLM (Table 1). This
channel was enriched from detergent-solubilized sperm
plasma membranes using a wheat germ agglutinin-Sepha-

rose column. The anion selectivity sequence found was
NO3

2 . CNS2 . Br2 . Cl2. The channel has a high open
probability at the holding potentials tested and often dis-
plays substates. This channel could be involved in the AR,
influencing the sperm resting EM, or being modulated
during the reaction (208).

3. AR inactivation

Acrosome reaction inactivation (ARI) turns sperm
irreversibly refractory to egg jelly and may involve ion
channels. This process is triggered by the egg jelly when
[Ca21]o is lowered from 10 mM in seawater to 2 mM and
is associated with a transient [Ca21]i increase. However, a
rise in [Ca21]i alone is not sufficient to induce ARI, since
artificially increasing [Ca21]i with an ionophore or rising
pHo does not trigger ARI. In contrast to the AR that
strictly requires Ca21, ARI can be triggered almost equally
well when Ca21 is replaced by Sr21. On the other hand,
although Mn21 does not affect AR, it inhibits ARI. Thus
the mechanisms involved in ARI differ from those leading
to AR. High pHo can trigger AR in previously inactivated
sperm by opening the same Ca21 channels activated by
the egg jelly. Thus ARI requires egg jelly receptor activa-
tion and originates from uncoupling of the egg jelly re-
ceptor from Ca21 channels, and also from the mechanism
that elevates pHi during AR (129).

4. Unsolved puzzles

There are still many intriguing and fundamental ques-
tions about the sea urchin sperm AR. How is ion transport
finely choreographed by the egg jelly receptor? It is un-
fortunate that no functional clues emerged from the se-
quence of REJ. Until now, there is no evidence for the
participation of G proteins in the AR, although they are
present in sperm. Is the Na1/H1 exchange that occurs
during the AR the same as the one involved in the speract
response? Probably not because the first is Ca21 depen-
dent (129, 249), and the other is not (250). How are the H1

and Na1 movements coupled during the AR? Why are
they voltage dependent? Why does the AR require a pHi

increase: to open the high conductance pH-sensitive Ca21

channel, to activate a poorly selective K1 channel modu-
lated by pH of the type recently cloned from mouse testis
or to stimulate proteases (86, 193), AC, some kinase or
phosphatase? Do second messengers like cAMP and IP3

modulate the permeability changes that occur during AR?
Is the second Ca21 channel that opens during AR a ca-
pacitative channel? The sea urchin sperm AC could be a
coincidence detector involved in AR, since it is modulated
by [Ca21]i, pHi, and EM (22). Figure 5 illustrates briefly the
main events and possible mechanisms that encompass the
sea urchin sperm AR.
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B. Starfish

Starfish spermatozoa undergo the AR upon encoun-
tering the jelly coat. They stop swimming immediately
after extruding a long acrosomal process (10–25 mm).
Starfish sperm do not have to swim through the egg jelly;
their long acrosomal tubule reaches the egg plasma mem-
brane. Three egg jelly components are involved in AR
induction (142): 1) AR-inducing substance (ARIS), a high-
molecular-weight (.107) sulfated glycoprotein whose
higher order structure seems important for molecular
recognition (159); 2) co-ARIS, a sulfated steroidal saponin
that is not species specific and whose biological activity
depends on the sulfate moiety and steroid side chain; and
3) asterosaps, tetratriacontapeptides containing an in-
tramolecular disulfide bond (Cys-8—Cys-32) essential for
function (219). An NH2-terminal partial sequence of the
13-kDa sperm chemoattractant from the starfish Pycnopo-

dia helianthoides shows high homology with asterosap
(207), suggesting asterosap is a potent chemoattractant.

Both co-ARIS and asterosap are diffusible components in
the egg jelly.

The starfish egg jelly causes Ca21 influx, modulates
cAMP concentration, increases pHi in a Na1-dependent
fashion (141, 143, 191, 192, 289), and leads to sperm
histone degradation (4, 5). Alone, ARIS can induce the AR
only in high-pH or high-Ca21 seawater (145, 146, 191).

In normal seawater, ARIS and co-ARIS together are
necessary to increase [Ca21]i and induce AR and thereaf-
ter decrease pHi (191, 192). In contrast to sea urchins, the
starfish sperm AR does not appear to require a pHi in-
crease. Acrosome reaction-inducing substance plus as-
terosap can also induce AR under physiological condi-
tions. Antiasterosap rabbit IgG neutralizes the ability of
egg jelly to induce AR; thus, in seawater, asterosap is
important for this reaction.

Studies using a fluorophore- and radioisotope-labeled
ARIS demonstrated the presence of species-specific re-
ceptors in the head of starfish sperm (292). Colloidal
gold-tagged ligands confirmed these results (187). Similar

FIG. 5. Simplified working model of sea urchin sperm acrosome reaction. By unknown mechanisms, binding of egg
factor [fucose sulfate polymer (FSP)] to sperm receptor, REJ (1), transiently opens Ca21 channels (2), and possibly K1

channels (3) that hyperpolarize L. pictus sperm. Ca21 channel initiates [Ca21]i elevation, which is blocked by dihydro-
pyridines (DHP), verapamil (VER), and trifluoperazine (TFP). Hyperpolarization stimulates a voltage- and Ca21-depen-
dent Na1/H1 exchange (4), raising pHi. These changes open a second pHi-dependent Ca21 channel (5) that keeps [Ca21]i

elevated, further depolarizing sperm, and leading to AR. Because inositol 1,4,5-trisphosphate (IP3) increases during AR,
second channel could be a store-operated Ca21 channel. FSP induced hyperpolarization and increases in [Ca21]i and pHi

activate sperm adenylyl cyclase (6), mainly found in flagella, but also present in head. cAMP increases could regulate
various channels. DIDS-sensitive Cl2 channels (7) may participate in setting resting EM or otherwise. Role of second
messengers and intracellular Ca21 stores in AR deserves further study.
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experiments revealed the presence of an asterosap recep-
tor in the sperm flagella. Asterosap derivatives photoaf-
finity labeled a 130-kDa flagellar sperm membrane pro-
tein, probably GC (218).

It has been suggested that maitotoxin induces the AR
in starfish Asterina pectinifera sperm by activating Ca21

channels. This marine toxin stimulates Ca21 channels in
other cells (6). The toxin-induced response depends on
[Ca21]o and is inhibited by verapamil. On the other hand,
increasing K1 to 30 mM KCl in seawater inhibits the
toxin-induced AR. This result indicates the possible par-
ticipation of K1 channels in the starfish AR.

C. Mammals

The main physiological inducer of the mammalian
sperm AR is the zona pellucida (ZP). Three sulfated gly-
coproteins (ZP1, ZP2, and ZP3) principally constitute ZP.
ZP3 (;83 kDa) exhibits most of the sperm binding and
AR-inducing activity (reviewed in Refs. 196, 310). Both
protein and carbohydrate regions of ZP3 appear to be
involved in its AR-inducing activity (91). The sperm bind-
ing sites of ZP3 are likely to be O-linked oligosaccharides
located in the COOH-terminal half of the polypeptide
(240; reviewed in Ref. 310). N-linked oligosaccharides of
porcine zona have been suggested to participate in sperm
binding (161).

Several candidates have been postulated as primary
receptors for ZP3, e.g., a 56-kDa protein (sp56) (34), a
95-kDa tyrosine kinase (177, 196), b1–4 galactosyltrans-
ferase (265), trypsinlike proteins (30), and spermadhesins
(37, 104, 135; for review, see Ref. 196). However, the
physiological relevance of many of these candidates is
under active debate (100, 151, 178, 188). Multiple con-
certed and cooperative interactions between ZP3 and var-
ious surface components of sperm, possibly involving
receptor aggregation and phosphorylation, may be re-
quired to achieve AR.

Extracellular Ca21 concentration is required for ZP-
induced AR in mature sperm (319). Essential to this pro-
cess is the elevation of pHi and [Ca21]i (93, 94). Zona
pellucida triggers [Ca21]i increases that precede exocyto-
sis in single sperm loaded with fluorescent ion indicators
(89, 94, 271). Several G proteins, such as Gi and Gz, are
present in mammalian sperm (120). In mouse sperm, ZP
activates Gi-1 and Gi-2 (304). Pertussis toxin (PTX), a
specific inactivator of the Gi class of heterotrimeric G
proteins, inhibits the ZP-induced AR and many of the ion
fluxes associated with it in mouse, bovine, and human
sperm (80, 81, 94, 175). Recently, it was shown that the
PTX-sensitive step in the ZP-induced AR is the pHi in-
crease (10). Determining which plasma membrane pro-
teins interact with activated Gi will help understand how
pHi is regulated during AR. GalTase-R has been shown to

interact with Gi; its overexpression in transgenic mice
makes sperm hypersensitive to ZP3 (122). However,
galactosyltransferase-null sperm, which do not seem to
undergo AR or bind to ZP3 oligosaccharides, still bind to
the ZP and fertilize. Other sperm membrane components
must participate to achieve fertilization (188).

Multiple results suggest the involvement of VDCC in
the mammalian sperm AR (10, 68, 95, 224). Elevation of
[K1]o depolarizes bull (90), ram (14), and human sperm
(35, 185, 238) and induces [Ca21]i increases sensitive, in
some species, to dihydropyridines, benzothiazepine, and
phenylalkylamine, which depend on [Ca21]o and pHo (10,
92). The AR can be induced under these conditions in
mouse, bull, and ram and is blocked by the above-men-
tioned Ca21 channel antagonists and by inorganic diva-
lent cations such as Co21 and Ni21. These blockers also
inhibit the ZP-induced AR in mouse and bull sperm (92).
Moderately high-affinity binding sites for PN-200–110
(dissociation constant ;0.4 mM), an L-type VDCC antag-
onist, are present in both species (92). In human sperm,
micromolar dihydropyridines block the AR induced by
neoglycoproteins bearing mannose residues and by a K1-
induced depolarization at pHo of 8.5 (35). Thus VDCC play
a key role during mammalian sperm AR. Early on, these
VDCC were identified as L-type channels on the grounds
of the micromolar sensitivity to dihydropyridines of the
mammalian sperm AR and the [Ca21]i increase associated
with it. Nevertheless, now it is known that such dihydro-
pyridine concentrations also block T-type Ca21 channels
(2, 9, 180).

1. Ca21 channels

In tip-dip bilayers formed from liposomes containing
boar sperm plasma membrane, two Ca21 channels (Table
1) were monitored, one of which was blocked by nitren-
dipine and La31 (55). Fusion of plasma membranes from
cauda epididymal or ejaculated boar sperm into BLM
revealed the activity of a nonselective cation channel. The
channel allowed monovalent and divalent cations
through, was not voltage dependent, and was blocked by
high concentrations of verapamil, nitrendipine, and ruthe-
nium red (54). With the use of the same strategy, an
interesting 10-pS Ca21 channel from boar sperm mem-
branes (Table 1) was characterized by Tiwari-Woodruff
and Cox (283). This channel selects poorly between
monovalent and divalent cations (PCa/PNa 5 3.4; PBa/PNa

5 1) and is blocked by nitrendipine (mean affinity con-
stant 5 0.5 mM) but activated by the agonist (S)-BAY K
8644 (mean affinity constant 5 0.3 mM). The channel does
not display the voltage dependence characteristics of T-
or L-type Ca21 channels in planar bilayers; this could be
due to the lipid composition or the membrane isolation
procedure, where some component is lost. Future work
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with this channel should explore its mode of regulation
and possible participation in the AR.

The relevance of Ca21 channels in sperm physiology
motivated the study of their genotypic and phenotypic
expression in the late differentiation stages of mouse
spermatogenesis. Oligonucleotide probes to a1-subunits
A, B, C, D, and E, which contain the pore and the voltage
sensor of the various voltage-dependent Ca21 channels
(L, N, T?, P/Q, and R), detected the presence of all these
a1-subunits in mouse testicular mRNA. However, mainly
a1E- and to a much lesser extent a1A-transcripts were
found in pachytene spermatocytes and in round and con-
densed spermatids (182). Only low-voltage-activated, rap-
idly inactivating Ca21 currents, with properties similar to
T-type Ca21 currents described in other cell types, were
seen in whole cell patch-clamp recordings from primary
spermatocytes at the pachytene stage of spermatogenesis
(7, 182, 246). It is interesting that pachytene spermato-
cytes have the lowest resting [Ca21]i (;50 nM) among the
population of germ cells. This value gradually elevates in
subsequent stages of germ cell differentiation (247) and
so do a1E-transcripts (C. Serrano and A. Liévano, unpub-
lished data). Calcium currents start activating at about
260 mV and reach a maximum between 220 and 230 mV.
Stronger depolarizations did not activate a second Ca21

current component. The mean peak Ca21 current density
ranges from 6 to 11 mA/cm2 in external solutions contain-
ing 10 mM Ca21. These Ca21 currents display voltage-
dependent inactivation (half-inactivation at 260 mV) and
have also been observed in round spermatids (7, 8, 246).
T-type Ca21 currents are sensitive to micromolar nifedipine,
Ni21, amiloride, and pimozide (see Fig. 3F). Because the
mouse sperm AR and the uptake of Ca21 that triggers it are
also inhibited by these blockers (7, 92), at similar concen-
trations, it is very likely that a T-type Ca21 channel is in-
volved in inducing this reaction (7, 182, 246). The above-
mentioned results are also consistent with antifertility
effects reported for dihydropyridines in human males (138).

Other than pH, which does not have profound effects
(247), little is known about the mechanisms regulating
T-type Ca21 channels in spermatogenic cells, or in the
mature sperm. Further work is required to study these
mechanisms, since they may influence spermatogenesis
and sperm physiology during the early stages of mamma-
lian fertilization. It has been reported that in dissociated
mouse pachytene spermatocytes and round spermatids,
the T-type Ca21 currents are facilitated after strong depo-
larizations or high-frequency stimulation (8).

The molecular identity of T-type channels in spermat-
ogenic cells remains to be defined. Soong et al. (268)
showed that a rat a1E-clone expressed in Xenopus oo-
cytes yielded Ca21 channels exhibiting functional proper-
ties compatible with those of low-voltage-activated Ca21

channels. To the contrary, a1E-clones from other species
were reported to form exclusively high-voltage-activated

Ca21 channels (83). On the other hand, antisense oligo-
nucleotides against rat brain a1E were found to decrease
T-type Ca21 currents in one system (229) and R-type Ca21

currents in another (230).
In apparent settlement of the issue, Pérez-Reyes et al.

(228) recently cloned from rat brain a neuronal Ca21

channel and called it a1G. Expression of a1G in Xenopus

oocytes yielded channels whose properties defined it,
neatly, as a T-type Ca21 channel, indicating that a1G rep-
resented the first member of a putative family of low-
voltage-activated T-type Ca21 channels. The channel a1G

is present also in mouse and humans, where it mapped to
chromosome 17q22. These findings question the notion
that a1E might contribute to the formation of T-type Ca21

channels in spermatogenic cells (182). However, Meir and
Dolphin (197) have demonstrated that expression of a1B,
a1E, or a1C in COS-7, a cell line devoid of endogenous
Ca21 channel subunits or Ca21 channels, can yield low-
conductance, low-voltage-activated Ca21 channels whose
voltage dependence and kinetics of activation and inacti-
vation makes them undistinguishable from native T-type
Ca21 channels.

A 2,169-base clone was isolated by RT-PCR from rat
testis mRNA whose sequence is closely related to a1C

found in rat cardiac muscle (126). This is not unexpected,
as shown by Liévano et al. (182), considering various
cellular types are found in testis and only a probe specific
for this subunit was used. Antibodies against skeletal
L-type cardiac a1S were used, without peptide or protein
controls, as the sole proof that the cardiac a1C is present
in mature sperm. An 84-base difference with the rat car-
diac muscle a1C was detected and attributed to splicing
and alternate exon usage. Goodwin et al. (125) indicated
that this change could alter dihydropyridine affinity and
activation kinetics that would explain the discrepancies
between AR properties and L-type Ca21 channels. Their
more recent studies have indicated a second difference in
the sequence of their testis a1C-clone, which encodes for
another putative dihydropyridine binding site. In situ RT-
PCR in rat testis frozen sections using primers specific to
this site revealed PCR products associated with all stages
of spermatogenesis. Although it is most likely that other
a1-subunits are present in mature sperm (7, 182, 246) and
it is not known if their clone is functional, they have
concluded that the relevant VDCC for the AR is an L-type
channel (125).

In view of all these findings, it becomes necessary to
determine if a1G or a1H (56), another a1-subunit that
codes for T-type Ca21 currents in human heart, is present
in the later stages of spermatogenesis. Experiments are
needed to decipher which a1-subunit codes for the T-type
Ca21 currents of spermatogenic cells that appear to be
crucial for the mouse sperm AR.

It is unclear if T-type Ca21 channels can be opened by
a depolarization at the resting potential of capacitated
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sperm (255 mV; Ref. 326), since they are probably inac-
tivated. Acrosome reaction cannot be triggered by depo-
larization with K1 in ram, mouse, and bull sperm unless
external or internal pH is raised (10, 92). A transient
hyperpolarization could be needed, as proposed in sea
urchin sperm (124), to remove Ca21 channel inactivation
and then open the T-type Ca21 channel (182). Depending
on the equilibrium potential for Cl2, anion channels could
hyperpolarize sperm; alternatively, a K1 channel could
open.

Once VDCC are ready to open, is a ZP-induced sperm
depolarization required, or could a transient hyperpolar-
ization that would return the sperm potential to its resting
value (approximately 255 mV) be enough to initiate T-
type Ca21 channel opening? Although K1 channels are
present in sperm, so far, ZP3 has not been shown to cause
a transient hyperpolarization. Zona pellucida or ZP3 has
been reported to induce a 30-mV depolarization in bovine
or mouse sperm. However, this depolarization seems too
slow to activate T-type Ca21 channels (10). For the time
being, two candidates may be considered to accomplish a
ZP3-induced depolarization: 1) mSlo3, if its voltage de-
pendence is shifted to more negative potentials in capac-
itated sperm and the pHi increase can open it, and 2) a
homolog of sea urchin sperm SPIH, if present in mature
sperm, and if the ZP3-induced increase in cAMP is fast
enough (309).

2. K1 and cation-selective channels

The experiments inducing AR by depolarizing with
K1 at high pH imply the presence of K1 channels in the
sperm plasma membrane. Indeed, K1-selective and TEA1-
sensitive channels have been observed in spermatogenic
cells (131) and in bilayers containing rat sperm plasma
membranes (40). Little is known about the regulation of
K1 channels in spermatogenic cells and in sperm.

Planar bilayer (40, 54, 55, 164) and patch-clamp stud-
ies (85) have revealed the presence of poorly selective
cationic channels in mammalian sperm, which could de-
polarize sperm to open VDCC and trigger AR (Fig. 3 and
Table 1). However, the modes of regulation of these chan-
nels are unknown.

The recently cloned mSlo3 K1 channel found in
mouse spermatogenic cells could contribute to depolarize
mature sperm (256). This channel, named Slo3, exhibits
extensive sequence similarity to Slo1, the large-conduc-
tance K1 channel activated by Ca21 and voltage. In con-
trast to Slo1, Slo3 is refractory to Ca21 but is activated by
depolarization and basic pH. At 180 mV, pH 7, the chan-
nel’s open probability is ,1%, whereas at pH 8.0, it in-
creases by as much as 100-fold. Furthermore, Slo3 is
poorly selectivity for K1 over Na1, as revealed by a
PK/PNa 5 5, compared with a PK/PNa 5 50 in Slo1. Slo3
channel opening requires a somehow extreme depolariza-

tion, due to its quite positive half-activation voltage (170
mV) as well as its shallow voltage dependence (16 mV/e-
fold). Because it displays voltage and pH sensitivity, Slo3
differs from other cloned channels exhibiting only pH
dependence (77, 273). Northern blot analysis demon-
strated that Slo3 message is expressed prominently in
mouse and human testis but is absent from brain, muscle,
lung, kidney, and heart. In situ hybridization revealed that
mSlo3 message is present in the seminiferous tubules,
signals being more abundant over maturing spermato-
cytes and in the later stages of spermatogenesis. Because
sperm basically lack translational activity, it is reasonable
to speculate that Slo3 might be present and functional in
the mature sperm, translating changes in H1 concentra-
tion into changes in sperm cell EM. Antibodies against
Slo3 will be important to establish its presence in mature
sperm. Moreover, finding specific blockers for Slo3 will be
helpful in assessing its role in sperm function.

If Slo3 is functionally present in mouse sperm, could
it open in response to the ZP-induced pHi increase? Con-
sidering its PK/PNa ;5 and pH dependence (256), it could
depolarize sperm contributing to activate VDCC, possibly
T-type Ca21 channels, and trigger AR (7, 182, 246). How-
ever, unless its voltage dependence is shifted to more
negative potentials in sperm, compared with Xenopus

laevis oocytes, this would be difficult, since it requires a
large depolarization to open (256). In addition, although
the ZP-induced sperm pHi increase is inhibited by PTX,
the depolarization is not. This result questions the role of
Slo3 in this sperm EM change (10). The molecular mech-
anisms involved in the ZP-induced opening of VDCC are
still ill defined.

3. Other Ca21-permeable channels

As in sea urchin sperm (128), more than one type of
Ca21 channel has been proposed to participate in the
ZP-induced mammalian sperm AR (89). T-type Ca21 chan-
nels activate transiently (7, 246); therefore, they cannot
sustain [Ca21]i elevated, as it occurs during the AR. A
high-conductance, voltage-dependent poorly Ca21-selec-
tive channel (PCa/PNa 5 4), similar to the one described in
sea urchin sperm membranes, has been detected directly
transferring ion channels from mouse sperm to BLM in
planar bilayers. Possibly this channel could be responsi-
ble for the sustained Ca21 influx, since at certain poten-
tials it remains open. This channel must be important
considering its presence in diverse species and its
sensitivity to Co21 and ruthenium red which block AR
(21, 164).

In many cells (e.g., Ref. 320) including sea urchin
(128) and mammalian sperm (10), an interrelationship
between pHi and [Ca21]i has been established. Recently, it
was shown that controlled intracellular alkalinization
with NH4Cl pulses results in important [Ca21]i increases
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in pachytene spermatocytes, round and condensing sper-
matids, and testicular sperm (247). After an initial de-
crease in [Ca21]i in response to alkalinization, [Ca21]i

increases along several seconds. The [Ca21]i increase is
abolished by Ni21 but is refractory up to 20 mM nifedipine
and to antagonists of Ca21 release from internal stores.
The pH-induced increases in [Ca21]i are reversible and,
moreover, their magnitude becomes larger in successive
alkalinization episodes, revealing the occurrence of facil-
itation. The fact that nifedipine, a blocker of T-type Ca21

channels in spermatogenic cells, has no effect on alkalin-
ization-dependent [Ca21]i increases discards, in principle,
the participation of T-type Ca21 channels. On the other
hand, the direct contribution of intracellular stores to the
alkalinization-induced [Ca21]i increase in spermatogenic
cells is minor. The alkalinization-induced [Ca21]i in-
creases grow with maturation and are the largest in tes-
ticular sperm. These results suggest that this pH-depen-
dent Ca21 permeability pathway could operate in mature
sperm (247).

Although Ca21 release from internal stores does not
contribute significantly to the alkalinization-induced
[Ca21]i increases, these stores could contribute indirectly
through the modulation of SOC (226). These channels
may be present in the plasma membrane of sperm. In fact,
Ca21 uptake is stimulated in spermatogenic cells by com-
pounds known to release Ca21 from internal stores such
as thapsigargin and cyclopiazonic acid (247). The pH-
dependent Ca21 influx pathway is permeable to Sr21,
Ba21, and Mn21. These findings indicate that spermato-
genic cells, and probably mature sperm, can undergo
important [Ca21]i changes in response to increases in pHi.
Although probably a SOC-type channel, the mechanism
leading to alkalinization-induced elevations in [Ca21]i in
spermatogenic cells and testicular sperm remains to be
investigated further. If present in mature sperm, this novel
Ca21 permeation pathway could be responsible, at least in
part, for the dihydropyridine-insensitive Ca21 influx that
occurs during the ZP-induced AR (247). It is interesting
that transcripts from a transient receptor potential ho-
molog have been found in bovine spermatocytes (316).

Consistent with the observations just described,
thapsigargin triggers AR in mouse and human sperm (199,
303). The response depends on [Ca21]o; thus cross-talk
between internal and external Ca21 pathways occurs.
Inositol 1,4,5-trisphosphate receptors have been selec-
tively immunolocalized to the acrosomal cap of mature
nonreacted mammalian sperm (303) and may also be
present after AR in their plasma membrane (285). Fur-
thermore, Walensky and Snyder (303) observed IP3-in-
duced release of 45Ca21 from the acrosome that was
prevented by thapsigargin. These results led them to pro-
pose that IP3-regulated Ca21 release from the acrosome
participates in the induction of the AR (303).

H-89, a PKA inhibitor, decreases IP3-induced Ca21

efflux from isolated acrosomes, suggesting that PKA may
regulate the IP3 receptor (36, 269). The ZP-induced AR
increases pHi, and alkaline pHi favors Ca21 release
through IP3 receptors, adding to the possible modulation
pathways of [Ca21]i rise in sperm (26). Future experi-
ments will determine the nature of the cross-talk between
internal (acrosomal) and plasma membrane Ca21-per-
meant pathways, like IP3 receptors or SOC, in the ZP-
induced AR (see Fig. 6).

4. AR agonists distinct from ZP

The AR can be induced by other agonists like proges-
terone (15, 28, 201, 281), GABA (239, 262, 317), glycine (202),
epidermal growth factor (167), ATP (96, 97), hyposmotic
shock (241), and platelet-activating factor (260). Adenosine
59-triphosphate induces a Na1-dependent depolarization
through a P2 purinergic poorly selective cation channel,
independently of [Ca21]o (97). Calcium-independent secre-
tory exocytosis triggered by ATP (179) or Ca21-dependent
exocytosis triggered by osmotic changes have been de-
scribed (71, 87). Do these “alternative” pathways to achieve
AR have a physiological role? Some of these transduction
systems could be vestiges from previous differentiation
stages. Others, like progesterone, may potentiate the ZP-
induced AR (239); enhance capacitation (17, 70); promote
sperm hyperactivation, a motility state important for fertili-
zation; and/or induce chemotaxis (297).

Progesterone significantly increases [Ca21]i and pro-
duces AR in human sperm in a [Ca21]o-dependent fashion
(15, 28, 281). This process has been reported to involve
Cl2 efflux (200, 244, 290). Progesterone elevates [Ca21]i,
rapidly reaching a long-lasting plateau. Conflicting results
have been reported about the effects of tyrosine kinase
inhibitors on these [Ca21]i changes (33, 203). Various
proteins ranging from 20 to 220 kDa are phosphorylated
during ZP- or progesterone-induced AR (16, 224, 280);
some could be ion channels. Pertussis toxin does not
inhibit the progesterone-induced [Ca21]i rise and AR, im-
plying a different signaling path from the one triggered by
ZP (98, 216, 279).

The sensitivity to dihydropyridines of the progester-
one-induced human sperm AR is in dispute, and so is the
participation of VDCC in this process (95, 198, 224, 225).
Progesterone also triggers a depolarization (98). Two
channels have been implicated in it: a cationic poorly
selective channel that allows Na1 in (98, 99) and a GABAA

receptor proposed to mediate Cl2 efflux (200, 244, 290).
Additionally, there is controversy regarding the Na1 de-
pendence of the progesterone-induced increase in [Ca21]i

and AR in human sperm. In the absence of [Na1]o, Foresta
et al. (98) reported that the progesterone-induced [Ca21]i

increase is enhanced and there is AR at 60 and 180 min,
while Garcia and Meizel (111) do not see stimulation of
the progesterone-induced Ca21 signal nor AR, but at 5
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min. These discrepancies could be due to different con-
ditions used to measure [Ca21]i and the times for AR
determination.

Progesterone metabolites enhance the interaction of
GABA with the GABA receptor, a multisubunit protein
containing a Cl2 channel (231). The GABA receptor was
immunodetected in boar and ram sperm (82). Progestins
may trigger human sperm responses by interacting with a
GABAA receptor-like/Cl2 channel complex (317).

The neuronal GABAA receptor has consensus se-
quence sites for phosphorylation (194). Possibly the 50-
kDa a-subunit of the GABAA receptor, immunocytochem-
ically detected to the equatorial sperm head segment,
could be phosphorylated in tyrosine, in response to pro-
gesterone (280, 317).

Glycine receptors have also been immunodetected in
porcine sperm and reported to mediate glycine and zona-
induced AR (202). Antagonist studies indicate that a gly-
cine-like receptor participates in the AR induced by this
neurotransmitter and by ZP in porcine and human sperm,
while the GABA-like receptor is involved in the AR trig-
gered by progesterone (198). These results suggest that
different Cl2 channels are required to induce AR by dif-
ferent ligands.

5. Cl2 channels

The first single-channel recordings made in cell-at-
tached and excised patches from mouse sperm revealed
anion channels sensitive to micromolar niflumic acid

FIG. 6. Schematic model of mammalian sperm ion channel participation in acrosome reaction (1). Zona pellucida
(ZP) 3 binds to sperm receptors and possibly aggregates them initiating AR. Three receptor candidates, of several
possible, are illustrated: spermadhesin (SA), sp56, and GalTase (Gal). AR could be modulated or primed by progesterone
(Prog) and GABA (19), whose receptors are displayed on top. Stimulated ZP receptors could then activate Gi proteins
sensitive to pertussis toxin (PTX) that directly or indirectly stimulate a H1 transporter (2) increasing pHi (3). Opening
of a K1-selective channel (29) could hyperpolarize sperm, removing inactivation from T-type Ca21 channels. Removal of
inactivation is at least partially accomplished by hyperpolarization that occurs during capacitation. If ZP3 can induce a
transient hyperpolarization (not measured yet), repolarization could open T-type Ca21 channels (4). Alternatively, a
nonselective cationic channel (39) depolarizes sperm so that T-type Ca21 channels may open. This channel could be
either mSlo3, if its voltage dependence is modified in sperm, or a homolog of sea urchin sperm SPIH. Receptor activation
by ZP3 may also lead to IP3 production (299), which together with increase in pHi and/or [Ca21]i would release Ca21 from
acrosome and activate a store-operated channel (SOC) channel in plasma membrane (5). SOC channel would explain
sustained increase in [Ca21]i that occurs during AR. IP3 receptor is present in acrosome. Progesterone can also open
cation channels that depolarize sperm. Cl2 fluxes via GABAA-type receptor or other niflumic acid (NA)-sensitive Cl2

channels (49) may modulate EM. Adenylyl cyclase (AC) regulation by [Ca21]i and possibly G proteins (G?) and EM (59)
may also participate in AR. Increases in cAMP and other second messengers (6) may affect plasma membrane and
acrosome ion channels, directly or through cAMP, protein kinase (PKA), tyrosine kinases, and/or protein kinase C (PKC),
influencing course of AR. [Ca21]i and pHi increases modulate phospholipases, proteases, kinases, and phosphatases,
which regulate fusion machinery to achieve AR. DAG, diacylglycerol; PIP2, phosphatidylinositol 4,5-bisphosphate.
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(IC50 5 11 mM) (Fig. 3C, Table 1) (85). Niflumic acid has
been used to block Ca21-dependent Cl2 channels (314).
Importantly, niflumic acid was an effective inhibitor of the
AR induced by GABA, progesterone, and ZP. Inhibition of
AR induced by GABA and ZP required lower niflumic acid
concentrations (IC50 5 1 and 7 mM, respectively) than AR
induced by progesterone (IC50 5 84 mM), suggesting that
anion channels activated by GABA and ZP might be dif-
ferent from those activated by progesterone or, alterna-
tively, that progesterone acts on other surface receptors
in addition to Cl2 channels. The results suggest that an-
ion-selective channels are important actors in the sperm-
egg dialogue. Voltage-gated Cl2 currents, blocked by ni-
flumic acid (IC50 5 100 mM), were also recorded in mouse
pachytene spermatocytes (85). Anion channels have been
detected in BLM containing mouse sperm plasma mem-
branes (Table 1, Fig. 3) (164).

6. Second messengers and phosphorylation

Acrosome reaction induced by ZP, progesterone, and
nonphysiological agents like the Ca21 ionophore A-23187
is accompanied by phospholipid and cAMP metabolic
changes (90, 102, 156, 225, 239, 281). Activity of PKC and
PKA may be influenced by these pathways, resulting in
phosphorylation changes of several proteins during the
AR (73, 203). Antibodies have detected PKC-a and PKC-
bII in the equatorial segment of human sperm heads (242)
and Gq/11a and phospholipase C-b1 in the anterior mouse
acrosomal region (303). Biologically active phorbol di-
esters and diacylglycerols influence the cell distribution
of PKC and the time course of the ZP-induced AR (79, 176,
239). Furthermore, PKC translocation from cytosol to the
plasma membrane depends on [Ca21]o (168). Activation
of Ca21 uptake by progesterone and ZP is sensitive to
PKC and PKA inhibitors in plasma membrane vesicles and
in isolated acrosomes from bovine sperm (36, 269), and to
PKC inhibitors in human sperm (99). Agonists for these
kinases, especially when combined, appear to circumvent
the [Ca21]o requirement of the AR (73, 203). These find-
ings suggest that [Ca21]i rises may activate these kinases
during intermediate steps of the physiologically relevant
AR. Artificial stimulation of the kinases overcomes the
[Ca21]o requirements for the final stages, where mem-
brane fusion occurs. Alternatively, Ca21 from intracellu-
lar stores could be liberated during kinase stimulation,
bypassing the need for [Ca21]o uptake. Future experi-
ments will determine if the physiologically relevant AR
involves cross-talk between internal (acrosomal) and
plasma membrane Ca21-permeant pathways, like IP3 re-
ceptors or SOC (see Fig. 6). Unraveling the mammalian
sperm AR still requires an understanding of the delicately
organized participation of several sperm receptors in the
regulation of ionic fluxes involving G proteins, EM, and
second messengers (see Fig. 6 for a working hypothesis).

VI. CONCLUDING REMARKS

Ion channels play a cardinal role in the dialogue
between gametes and thus in the generation of a new
individual in many species. Several new avenues are being
pursued that have great potential to contribute to our
knowledge of sperm physiology and fertilization. Inter-
weaving strategies of molecular biology and electrophys-
iology in spermatogenic cells, together with ion channel
incorporation directly from sperm or using purified pro-
teins, may yield information as to how ion channels are
regulated and participate in spermatogenesis, sperm mat-
uration, the AR, and during fertilization. The long-awaited
crystal structure of an ion channel (76) sets a new better-
defined stage to think about possible regulation mecha-
nisms and generates many new interesting questions re-
lating structure-function relationships.
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