Action potential

• Definition: an "all-or-none" change in voltage that propagates itself down the axon

Action potential

- Definition: an "all-or-none" change in voltage that propagates itself down the axon
- Naturally occurring action potentials begin at the *axon hillock*

Action potential

- Definition: an "all-or-none" change in voltage that propagates itself down the axon
- Naturally occurring action potentials begin at the *axon hillock*
- Action potentials do not occur anywhere else in a neuron – not in dendrites, not in cell bodies

Figure 48.9 The role of voltage-gated ion channels in the action potential (Layer 5)

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.

How do you get from electrical signals to chemical signals and back again?

• The action potential moves down the axon until it reaches the terminal (synapse)

- The action potential moves down the axon until it reaches the terminal (synapse)
- Its wave of depolarization opens *voltage-activated Ca²⁺ channels*

- The action potential moves down the axon until it reaches the terminal (synapse)
- Its wave of depolarization opens *voltage-activated Ca*²⁺ *channels*
- Influx of Ca²⁺ causes *vesicles* to fuse with presynaptic cell membrane

- The action potential moves down the axon until it reaches the terminal (synapse)
- Its wave of depolarization opens *voltage-activated Ca*²⁺ *channels*
- Influx of Ca²⁺ causes *vesicles* to fuse with presynaptic cell membrane
- Transmitter diffuses across synaptic cleft and binds to receptors on post-synaptic cell

• If a transmitter depolarizes the post-synaptic neuron, it is said to be *excitatory*

Neurotransmitter	Structure	Functional Class
Acetylcholine	0 H ₃ CCCH ₂ CH ₂ N*ICH ₃ J ₃	Excitatory to vertebrate skeletal muscles; excitatory or inhibitory at other sites
Biogenic Amines Norepinephrine		Excitatory or inhibitory
Dopamine		Generally excitatory; may be inhibitory at some sites
Serotonin		Generally inhibitory
Amino Acids GABA (gamma aminobutyric acid)	H ₂ NCH ₂ CH ₂ COOH	Inhibitory
Glycine	H ₂ NCH ₂ COOH	Inhibitory
Glutamate	H ₂ N-CH-CH ₂ -CH ₂ -COOH	Excitatory
Aspartate	H ₂ N-CH-CH ₂ -COOH I COOH	Excitatory
Neuropeptides		
Substance P	Arg-Pro-Lys-Pro-Gin-Gin-Phe-Phe-Gly-Leu-Met	Excitatory
Met-enkephalin (an endorphin)	Tyr-Gly-Gly-Phe-Met	Generally inhibitory

Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.

Table 48.1 The Major Known Neurotransmitters

- If a transmitter depolarizes the post-synaptic neuron, it is said to be *excitatory*
- If a transmitter hyperpolarizes the postsynaptic neuron, it is said to be *inhibitory*

Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.

- If a transmitter depolarizes the post-synaptic neuron, it is said to be *excitatory*
- If a transmitter hyperpolarizes the postsynaptic neuron, it is said to be *inhibitory*
- Whether a transmitter is excitatory or inhibitory depends on its receptor

Neurotransmitter	Structure	Functional Class
Acetylcholine	0 II H ₃ C—C—CH ₂ —CH ₂ —N*—ICH ₃ I ₃	Excitatory to vertebrate skeletal muscles; excitatory or inhibitory at other sites
Biogenic Amines Norepinephrine		Excitatory or inhibitory
Dopamine		Generally excitatory; may be inhibitory at some sites
Serotonin		Generally inhibitory
Amino Acids		
GABA (gamma aminobutyric acid)	H ₂ NCH ₂ CH ₂ COOH	Inhibitory
Glycine	H ₂ NCH ₂ COOH	Inhibitory
Glutamate	H ₂ NCH ₂ CH ₂ COOH CDOH	Excitatory
Aspartate	H ₂ NCHCH2COOH I COOH	Excitatory
Neuropeptides		
Substance P	Arg-Pro-Lys-Pro-Gin-Gin-Phe-Phe-Giy-Leu-Met	Excitatory
Met-enkephalin (an endorphin)	Tyr-Gly-Gly-Phe-Met	Generally inhibitory

Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.

Table 48.1 The Major Known Neurotransmitters

Figure 48.12 A chemical synapse

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

 Acetylcholine is <u>excitatory</u> because its receptor is a *ligandgated Na+ channel*

(a)

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

- Acetylcholine is <u>excitatory</u> because its receptor is a *ligandgated Na+ channel*
- *GABA* is <u>inhibitory</u> because its receptor is a *ligand-gated Cl-channel*

(a)

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

- Acetylcholine is <u>excitatory</u> because its receptor is a *ligand*gated Na+ channel
- *GABA* is <u>inhibitory</u> because its receptor is a *ligand-gated Cl-channel*
- Other transmitters (e.g. vasopressin) have G-proteinlinked receptors

(a)

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

- Acetylcholine is <u>excitatory</u> because its receptor is a *ligandgated Na+ channel*
- *GABA* is <u>inhibitory</u> because its receptor is a *ligand-gated Cl-channel*
- Other transmitters (e.g. *vasopressin, dopamine*) have *G*-*protein-linked receptors*
 - Effects depend on the *signal transduction pathway* and cell type

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Some synapses form on the dendrites, cell body, or the axon hillock.

How do post-synaptic neurons integrate information from more than one pre-synaptic cell?

Summation of postsynaptic potentials

• The opening of a ligand-gated channel produces a *post-synaptic potential* – either excitatory (*EPSP*) or inhibitory (*IPSP*)

Summation of postsynaptic potentials

- The opening of a ligand-gated channel produces a *post-synaptic potential* either excitatory (*EPSP*) or inhibitory (*IPSP*)
- If two post-synaptic potentials occur at the same time in different places, or at the same place in rapid succession, their effects add up.

Summation of postsynaptic potentials

- The opening of a ligand-gated channel produces a *post-synaptic potential* either excitatory (*EPSP*) or inhibitory (*IPSP*)
- If two post-synaptic potentials occur at the same time in different places, or at the same place in rapid succession, their effects add up.
- This adding up is called *spatial* or *temporal <u>summation</u>*

 Because voltage spreads along the dendrites and cell body without an action potential, the strength of PSPs decay with distance

- Because voltage spreads along the dendrites and cell body without an action potential, the strength of PSPs decay with distance
- The closer a synapse is to the axon hillock, the stronger its influence on post-synaptic firing.

The way in which a neuron's EPSPs and IPSPs sum to cause (or prevent) an action potential represents a computation.

Figure 48.19 Embryonic development of the brain

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.